Microstructure of Smectite Clays and Engineering Performance

Roland Pusch and Raymond N. Yong
Microstructure of Smectite Clays and Engineering Performance
Microstructure of Smectite Clays and Engineering Performance

Roland Pusch and Raymond N. Yong
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of tables</td>
<td>xix</td>
</tr>
<tr>
<td>Preface</td>
<td>xxi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Reference</td>
<td>4</td>
</tr>
<tr>
<td>2 Smectite clays</td>
<td>5</td>
</tr>
<tr>
<td>2.1 Particles</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Basic properties of smectite particles</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Non-expanding clay minerals in smectite clays</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Rock-forming minerals in smectitic clays</td>
<td>26</td>
</tr>
<tr>
<td>2.5 Inorganic amorphous matter in smectitic clays</td>
<td>27</td>
</tr>
<tr>
<td>2.6 Organic material in smectitic clays</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Origin and occurrence of commercially exploited smectitic clays</td>
<td>29</td>
</tr>
<tr>
<td>2.8 References</td>
<td>40</td>
</tr>
<tr>
<td>3 Microstructure of natural smectite clay</td>
<td>42</td>
</tr>
<tr>
<td>3.1 Objective</td>
<td>42</td>
</tr>
<tr>
<td>3.2 Definitions</td>
<td>42</td>
</tr>
<tr>
<td>3.3 Microstructural evolution of sediments</td>
<td>43</td>
</tr>
<tr>
<td>3.4 Soil microstructure, macrostructure and physical integrity</td>
<td>47</td>
</tr>
<tr>
<td>3.5 Methods for microstructural analysis</td>
<td>66</td>
</tr>
<tr>
<td>3.6 References</td>
<td>80</td>
</tr>
</tbody>
</table>
vi Contents

4 Microstructure of artificial clay-based engineered barriers 82
 4.1 Objective 82
 4.2 Preparation of smectitic barriers 82
 4.3 Microstructural evolution of smectite ‘buffer’ 85
 4.4 Microstructural evolution of smectitic fills 98
 4.5 References 106

5 Clay properties and microstructural constitution 107
 5.1 Objective 107
 5.2 Hydraulic conductivity 107
 5.3 Gas conductivity of artificially prepared smectite clay 125
 5.4 Ion diffusion 128
 5.5 Expandability 130
 5.6 Microbial function 135
 5.7 Stress/strain behaviour 136
 5.8 Concluding remarks 145
 5.9 References 146

6 Microstructural function of smectite clay in waste isolation 148
 6.1 General 148
 6.2 Clay for isolation of waste landfills 149
 6.3 Clay for isolation of highly radioactive waste – deep geological disposal 180
 6.4 References 206

7 Long-term function of smectite clay for waste isolation 208
 7.1 General 208
 7.2 Clay liners of waste landfills 209
 7.3 HLW isolation – a type of temperature-related mineral conversion 219
 7.4 References 247

8 Theoretical modelling of the performance of smectite clay microstructure 250
 8.1 Introduction 250
 8.2 Purpose and objectives of models 251
 8.3 Elements of the THM-CB problem 252
8.4 Basis for modelling 253
8.5 Modelling of microstructural evolution 268
8.6 Integrated THMC modelling 269
8.7 Applicability of models 292
8.8 Application of the codes to the AEspoe case 294
8.9 Models for special purposes 308
8.10 References 314

Index 317
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Example of concept for disposal of HLW in argillaceous rock (NAGRA, Switzerland)</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Examples of repository concepts for disposal of HLW in crystalline rock</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Large block of highly compacted bentonite powder</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Commonly assumed crystal constitution of a smectite lamella</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>A simplified representation of silica tetrahedral and octahedral unit</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Micrographs of smectite (montmorillonite) particles</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Model of hydrate configuration in interlamellar montmorillonite with Edelmann/Favejee crystal constitution</td>
<td>8</td>
</tr>
<tr>
<td>2.5</td>
<td>Interlamellar hydrated Ca ion complex with water molecules</td>
<td>9</td>
</tr>
<tr>
<td>2.6</td>
<td>Possible crystal structure for Li- and Na-montmorillonite with apical tetrahedrons</td>
<td>11</td>
</tr>
<tr>
<td>2.7</td>
<td>Proposed organization of water and ions at clay mineral surfaces</td>
<td>12</td>
</tr>
<tr>
<td>2.8</td>
<td>Interacting electrical double-layers</td>
<td>13</td>
</tr>
<tr>
<td>2.9</td>
<td>Chemical potential of montmorillonite-rich clay</td>
<td>14</td>
</tr>
<tr>
<td>2.10</td>
<td>Diffusion coefficient and viscosity of porewater in montmorillonite calculated by use of molecular dynamics</td>
<td>15</td>
</tr>
<tr>
<td>2.11</td>
<td>Soil-type humic acid forming polymers containing phenols and amino acids</td>
<td>18</td>
</tr>
<tr>
<td>2.12</td>
<td>Generalized picture of positively charged organic ions or molecules in the interlamellar space of smectites</td>
<td>19</td>
</tr>
<tr>
<td>2.13</td>
<td>Kaolinite, montmorillonite and illite minerals, using the simplified crystal notation</td>
<td>20</td>
</tr>
<tr>
<td>2.14</td>
<td>Typical size distribution of illite particles</td>
<td>21</td>
</tr>
<tr>
<td>2.15</td>
<td>Size distribution (longest diameter) of MX-80 bentonite dispersed in distilled water</td>
<td>22</td>
</tr>
<tr>
<td>2.16</td>
<td>Dispersed illite particles photographed using a TEM</td>
<td>22</td>
</tr>
</tbody>
</table>
x Figures

2.17 Stacks of chlorite lamellae 23
2.18 SEM picture of stacks of kaolinite particles 24
2.19 Basic hydroxy interlayer mineral with interlayer hydroxy sheets 26
2.20 TEM micrograph of amorphous substance precipitated on carbonate particles cementing them together 28
2.21 Bonding mechanism of organic molecules and clay minerals 29
2.22 TEM micrograph gas-filled void in clay matrix 30
2.23 View of open pit mining of Friedland Ton (FIM GmbH) 36
3.1 Hierarchic representation of soil structure 45
3.2 Interpretation of presence of microstructures 46
3.3 Hydrogen bonds established by water molecules located between particles 50
3.4 Bonds by sorbed bi- or polyvalent cations shown as ellipses 50
3.5 Dipole type bonding of particles with non-uniform charge distribution 51
3.6 Rheograms for sodium kaolinite 52
3.7 Soft kaolinite clay 53
3.8 Rheograms for kaolinite mixed with the polysaccharide Xanthan 53
3.9 Contribution of microstructure bonds and cementation to triaxial compressive strength 54
3.10 Variation of calculated hydraulic conductivity coefficient 55
3.11 Partitioning of Pb onto soil solids in column leaching experiments using a lead nitrate leachate 56
3.12 Clay aggregates in soft illitic sediments 58
3.13 Micrograph of 20 μm aggregate of illite/mixed-layer particles in low-electrolyte river water 58
3.14 Schematic showing failure of the total structure of a clay sample under load 60
3.15 Microstructural changes by compression 61
3.16 Failure in clay at critical stress conditions 62
3.17 TEM micrograph of microstructural changes in soft illitic clay 62
3.18 Theoretical relationship between bulk dry density in kg/m³ and the content of interlamellar water 64
3.19 Effective porosity 64
3.20 Influence of section thickness on the interpretation of microstructural details 67
3.21 Close-up view of knife and specimen in ultramicrotomy 68
3.22 Swelling pressure built up during saturation of an air-dry MX-80 bentonite sample 71
3.23 Structural effect on smectite clay due to drying 71
3.24 Light-micrographs of natural clay-rich materials 72
3.25 TEM micrograph of ultrathin section of smectitic Triassic clay
3.26 Smectitic moraine clay
3.27 Scanning micrograph of fractured freeze-dried smectite clay sample
3.28 TEM micrograph of 500 Å ultrathin section and channel section of clay
3.29 Method for defining microstructural features in 2D and 3D
3.30 Correlation of the average gel density (ρ_b) and the average bulk density (ρ_{av})
3.31 Example of digitalized micrograph of Wyoming bentonite
3.32 F_2 and F_3 versus gel density for Wyoming bentonite (MX-80)
3.33 F_2 and F_3 versus bulk density for Wyoming bentonite (MX-80)
3.34 Section thickness affecting the microstructural interpretation
4.1 System of components in deep disposal of highly radioactive waste
4.2 System of components in shallow disposal of chemical waste and low-level radioactive waste
4.3 Typical grain size distribution of American Colloid’s MX-80
4.4 Scanning electron micrograph of a lump of particles in dried and ground natural bentonite
4.5 Compacting Wyoming bentonite (MX-80) powder
4.6 Clay block prepared by compacting clay powder under 100 MPa pressure
4.7 Sector-shaped block of smectite-rich clay
4.8 Unit cell
4.9 Model of the unit cell compressed in the compaction phase and then hydrated resulting in permeable channels
4.10 Schematic picture of coagulation of clay particles
4.11 Expansion of Na-smectite clay by exposure to water vapour in a CNRS high-voltage electron microscope
4.12 Procedure for borehole plugging with compacted clay blocks
4.13 Growth of soft clay through the perforation
4.14 Arrangement of granules in compacted MX-80
4.15 Schematic pictures of stack assemblages and influence of density at water saturation
4.16 Digitalized TEM micrograph of HDPy$^+$-treated MX-80 clay
4.17 Performance of backfill without and with clay component
4.18 Maturation of mixture of 10% smectite clay and ballast particles
Figures

4.19 Fuller’s and Weymouth’s theoretical size distributions 103
4.20 Relationship between bentonite (MX-80) content and dry density 103
4.21 Micrograph of thin section of acrylate-embedded mixture 105
5.1 Schematic illustration of the proportions of water held in interlamellar spaces, micropores and macropores 108
5.2 Oedometer for permeation of soil samples and recording of swelling pressure 110
5.3 Illustration of constant head hydraulic conductivity testing 111
5.4 Water entry experiment with negative hydraulic head 112
5.5 Schematic diagram showing critical and apparent threshold gradients 113
5.6 Relation between the parameter P/T and the hydraulic conductivity evaluated from oedometer tests 114
5.7 System of elements with different hydraulic conductivity 115
5.8 Change in hydraulic conductivity of a smectitic clay 117
5.9 FEM calculation 118
5.10 Piping in the form of a hydraulic wedge 118
5.11 Assumed size distribution of pore size in clays A, B and C 120
5.12 Schematic view of the 3D conceptual model 121
5.13 Channel network mapped as a cubic grid with gel-filled channels intersecting at a node in the grid 121
5.14 Hydraulic conductivity of clays 124
5.15 Hydraulic conductivity of nearly pure illite 124
5.16 Impact of salt water on the hydraulic conductivity of FIM clay 124
5.17 Example of the gas penetration process at the critical pressure for a bentonite clay 127
5.18 Example of the gas penetration process at the critical pressure for Na bentonite and graded ballast 127
5.19 Measured effective diffusivities for smectite clay 129
5.20 Development of swelling pressure of maturing clay 131
5.21 Swelling pressure tests on saturated samples of FIM clay 132
5.22 Development of swelling pressure in HDPy⁺-treated MX-80 clay 135
5.23 Bacterium embedded in montmorillonite clay 136
5.24 3D system of boxes representing voids that are open or filled with soft clay gels 137
5.25 Shaly Canadian bentonite exploited for manufacturing clay powder 138
5.26 Typical brittle-type stress/strain behaviour at uniaxial compression of significantly cemented argillaceous rock 138
5.27 Schematic energy barrier spectrum in clay under shearing 139
5.28 Consecutive stages in the evolution of shear strain of microstructural network of clay particles 139
5.29 General appearance of the creep behaviour of clays 142
5.30 Transition from sol to gel form soft smectite after shearing 143
5.31 Thixotropic strength regain of smectite-rich clay 143
6.1 Typical general MSW landfill with top- and bottom-liner systems 150
6.2 Typical landfill waste bottom-liner systems 151
6.3 General specifications for engineered barrier systems 153
6.4 Schematic diagram of a refuse dump of buried type 153
6.5 Water content of 0.9 m column of 10% Na bentonite (MX-80) and 90% ballast 156
6.6 Comparison of predicted and measured water content of FIM clay 156
6.7 Oedometer for sampling during the test 157
6.8 Predicted and measured wetting rate of FIM clay 158
6.9 Relation between smectite (MX-80) content and dry bulk density 164
6.10 Specific permeability 166
6.11 Grain size distribution of mixture of moraine and very fine Na bentonite 166
6.12 Compaction curves of a mixture of MX-80 clay and crushed rock 168
6.13 Shear strain by differential settlement of a top liner 169
6.14 Direct shear apparatus used for the laboratory tests 169
6.15 Evaluated shear stress/strain behaviour 170
6.16 Failure envelope in Mohr–Coulomb representation 171
6.17 Section of sloping top liner 172
6.18 Generalized shape of the creep rate curve 174
6.19 Retention profiles for Pb, Cu and Zn 177
6.20 Three thousand year old mound at Hersby, Sollentuna, Uppland in Sweden 180
6.21 KBS-3V deposition hole with copper-shielded canister 182
6.22 Temperature-driven redistribution of the original water content 183
6.23 Schematic picture of hydraulically important structural features in near-field rock 185
6.24 Different hydraulic boundary conditions 186
6.25 Interpretation of thin section of crystalline rock 187
6.26 Water content as a function of the distance form the wet boundary 188
6.27 Flow conditions in porous medium with long hole 190
6.28 Increase in saturation of the clay for rock with $K = E^{-10} \text{ m/s}$ 191
6.29 Increase in saturation of the clay for rock with $K = E^{-11} \text{ m/s}$ 191
Figures

6.30 Increase in saturation of the clay for the rock with $K = E^{-12} \text{m/s}$ 192
6.31 Placement (a, b, c) and compaction (d, e, f) of backfill using the ‘inclined layer principle’ 194
6.32 Variation in dry density and water content 194
6.33 Clay block masonry with clay slurry (grout) filling the gap to the rock 195
6.34 Freshly prepared mixture of FIM clay, slag cement and strongly compacted MX-80 pellets 196
6.35 Repository consisting of a big concrete silo for intermediate level waste, and vaults for low-level waste 197
6.36 Schematic picture of the microstructure of a clay/ballast mixture 198
6.37 Longitudinal cross-section of rotationally symmetric plug with clay seals 200
6.38 Geometry and appearance of the 1600 bentonite blocks 200
6.39 Recorded outflow through and along the plug 201
6.40 Tests of plugs of smectite clay 202
6.41 Simplified description of the process leading to expansion of clay 203
6.42 Theoretical time-dependent movement 203
6.43 Hydraulic conductivity of soft Na-montmorillonite clay 204
6.44 One cubic meter block with two permeable 100 μm fractures 204
6.45 Experiment for electrophoretic sealing of fractures 205
7.1 Schematic illustration of the local regime at the freezing front 210
7.2 SEM pictures showing change in size and shape of MUs in high clay content soil 212
7.3 Experimental set-up of percolation test 214
7.4 Grain size distribution of ballasts A and B 214
7.5 Example of the impact of the hydraulic gradient on hydraulic conductivity 215
7.6 Change in hydraulic conductivity 218
7.7 Diagram showing the expected conversion of smectite to illite 221
7.8 Possible lattice constitutions of montmorillonite 222
7.9 CEC of the Libyan montmorillonite bentonite 223
7.10 SSA of the Libyan bentonite 223
7.11 Silt particle coated with small quartz particles 224
7.12 Comparison of montmorillonite-rich clay 224
7.13 Microstructural changes in the form of collapse of stacks of lamellae and precipitation of dense siliceous particles 225
7.14 Distribution of precipitated silica 225
7.15 Results of uniaxial testing of hydrothermally treated montmorillonite clay 226
7.16 Example of uniaxial compression testing 226
7.17 Evolution of SiO$_2$(aq) concentration profile (steep curve ~500 years) 230
7.18 Evolution of quartz abundance profile (lowest curve ~500 years) 230
7.19 Evolution of SiO$_2$(aq) concentration profile (lowest curve ~10000 years) 231
7.20 Evolution of quartz abundance profile (lowest curve ~10000 years) 231
7.21 Rehydration potential of Ca/Mg montmorillonite 234
7.22 Cell for clay/cement–water experiments 235
7.23 Crystal structure of Friedland Ton muscovite-montmorillonite 236
7.24 XRD diagram of FIM clay powders from outer and inner parts 238
7.25 Schematic picture of cell with pellets confined during water saturation and heating 240
7.26 Evolution of swelling pressure of strongly compressed MX-80 pellets at room temperature 240
7.27 TEM micrograph of clay prepared by strongly compressed MX-80 pellets 241
7.28 Schematic picture of the difference in dispersion and gel formation of strongly compressed MX-80 pellets 242
7.29 XRD plot of samples extracted at different distances 244
7.30 Mineral assembly of the buffer clay 245
7.31 Swelling pressure of the untreated buffer clay 246
7.32 Sediment volume of moist clay 246
8.1 The simplified THMCB repository problem 253
8.2 Simple schematic showing basic elements of the canister-buffer problem to be modelled 254
8.3 Illustration of a laboratory experiment demonstrating the effect of swelling of buffer material in a constrained sample 256
8.4 Assumption of properties and behaviour of unwetted portion 258
8.5 Schematic showing compression of unwetted portion of specimen 259
8.6 Different types of adsorption isotherms obtained from batch equilibrium tests 260
8.7 Transformation of various clay minerals 262
8.8 Schematic showing the repeating layers of a 2:1 layer-lattice mineral particle 263
Figures

8.9 Schematic diagram showing the action of MUs in a representative unit volume 264
8.10 Results from unsaturated flow into a natural low-swelling clay soil column 265
8.11 Heat transfer and hydro-mechanical calculations 280
8.12 Schematic representation of an unsaturated porous material 284
8.13 Pressure head (m) in the upper and salinity (%) at 447 m depth 295
8.14 Schematic view of generalized 3D model 295
8.15 (a) 3D tunnel domain and (b) 3D tunnel mesh 296
8.16 Measured and simulated temperature plots for mid-height canister in Hole 1 297
8.17 Measured and simulated degree of saturation for mid-height canister in Hole 1 298
8.18 Measured and simulated total pressure plots for mid-height canister in Hole 1 298
8.19 Measured and simulated saturation plots for mid-height canister in Hole 3 299
8.20 Evolution of temperature computed for three points in the buffer in the ‘wet’ Hole 1 300
8.21 Predicted degree of saturation at mid-height of heater number 1 301
8.22 Predicted temperature at mid-height canister in Hole 1 301
8.23 Predicted degree of saturation of the buffer at mid-height canister in Hole 1 302
8.24 Predicted total stress at mid-height canister in Hole 1 302
8.25 Water saturation of buffer and backfill versus time for two relevant cases (RF/RM BGR) 303
8.26 Temperature at mid-height of the canister in Hole 1 304
8.27 RH and temperature distributions in the buffer at mid-height canister in Hole 1 304
8.28 Evolution of total pressure at mid-height of the buffer in the wettest hole 305
8.29 Relative monovalent anion concentration 310
8.30 Effects of limitations in potassium availability to the illitization of buffer smectite in KBS-3V 314

Colour plates

The following colour plates appear at the end of the book.

Colour Plate I: Micrograph of thin section of acrylate-embedded mixture
Colour Plate II: Example of digitalized micrograph of Wyoming bentonite
Colour Plate III: Digitalized TEM micrograph of HDPy$^+$-treated MX-80 clay
Colour Plate IV: FEM calculation
Colour Plate V: 3D system of boxes representing voids that are open or filled with soft clay gels
Colour Plate VI: View of open pit mining of Friedland Ton (FIM GmbH)
Colour Plate VII: Bacterium embedded in montmorillonite clay
Colour Plate VIII: Micrograph of 20 μm aggregate of illite/mixed-layer particles in low-electrolyte river water
Colour Plate IX: Growth of soft clay through the perforation
Colour Plate X: Shaly Canadian bentonite exploited for manufacturing clay powder
Colour Plate XI: Schematic view of the 3D conceptual model
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Number and thickness of interlamellar hydrates in Å</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>d-spacing and water absorption of Na-montmorillonite in atmosphere with different RH</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Number of hydrate layers in compacted Na-montmorillonite</td>
<td>16</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical CEC ranges for some important smectites</td>
<td>17</td>
</tr>
<tr>
<td>2.5</td>
<td>CEC of montmorillonite determined with organic cations and barium</td>
<td>18</td>
</tr>
<tr>
<td>2.6</td>
<td>Accessory minerals of major importance in buffers and in the clay component of backfills</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>World production (P) and exports (E) of bentonite</td>
<td>31</td>
</tr>
<tr>
<td>2.8</td>
<td>Geological profile in the Tsukinuno Area (Tertiary age)</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Void classification</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Void size distribution in MX-80</td>
<td>94</td>
</tr>
<tr>
<td>4.2</td>
<td>Microstructural data for MX-80 in Na form (F_2-value)</td>
<td>95</td>
</tr>
<tr>
<td>4.3</td>
<td>Microstructural data for MX-80 in Na form (F_3-value)</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Microstructural parameters of HDPy^+-treated MX-80</td>
<td>97</td>
</tr>
<tr>
<td>4.5</td>
<td>Semi-theoretical relationships between clay contents, compaction degrees and physical soil data</td>
<td>104</td>
</tr>
<tr>
<td>5.1</td>
<td>Bulk and gel densities for MX-80</td>
<td>114</td>
</tr>
<tr>
<td>5.2</td>
<td>Microstructural data and conductivities for MX-80 in Na form</td>
<td>116</td>
</tr>
<tr>
<td>5.3</td>
<td>Microstructural data and conductivities for MX-80 in Ca form</td>
<td>116</td>
</tr>
<tr>
<td>5.4</td>
<td>Bulk hydraulic conductivity (K) of untreated and HDPy^+-treated MX-80 clay</td>
<td>119</td>
</tr>
<tr>
<td>5.5</td>
<td>Number of differently sized channels</td>
<td>120</td>
</tr>
<tr>
<td>5.6</td>
<td>Hydraulic conductivity (K) of three clay types</td>
<td>122</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of corrected theoretical hydraulic conductivity and experimental values</td>
<td>123</td>
</tr>
<tr>
<td>5.8</td>
<td>Experimentally determined critical gas pressure in MPa for MX-80 in Na form</td>
<td>126</td>
</tr>
</tbody>
</table>